Read our cookies policy and privacy statement for more information.
×Sacramento, California
Dynamic system modeling by transfer function and state-space methods using differential equation, time-response and frequency-response methods. Determination of steady-state errors due to step, ramp and parabolic inputs and disturbances for closed-loop systems. Mapping of block diagrams and state-space representations to signal flow graphs (SFG) as well as finding the transfer function of the system represented by the SFG by Mason's Rule. Closed-loop system stability is examined via poles and eigenvalues and by using the Routh-Hurwitz criterion. Introduction to observability and controllability of systems. Design of compensators for feedback systems using root-locus, frequency response and state-space methods. Introduction to digital control. Computer simulation methods such as MATLAB and SIMULINK are used to support the above subjects.
Units: 3.0